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Optical communications receiver assembly placed at F1: RF/Optical dichroic, 
optical filter, detector array, high-speed signal-processing equipment.
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Functional block diagram of Optical Receiver Assembly, 
placed on the main reflector at F1, near the entrance to the 
RF beam waveguide in a DSN 34-meter antenna.
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DSN polished panel, initial daytime visual tests

DSN polished panel reflectivity, surface accuracy test DSN polished panel ray concentration
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Example of sky radiance for a desert model, at 
“sun-earth-probe” (SEP) angle of 10 degrees.

Example of PSF generated by a realistically modeled panel surface
error distribution, showing high concentration of signal energy in
the inner +/- 125 micro-radians from center. Horizontal axes in µrads,
vertical axis in dB (intensity, arbitrary units)
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- Spectral radiance function
- Receiver collecting area
- Receiver FOV, steradians
- Optical signal wavelength
- Narrowband filter bandwidth

Average background count       depends on background intensity
in photo-counts/meter2, and collecting area A in meter2
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- Optical system throughput
- Detection efficiency
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• Laser transmitter appears as a point source, therefore …

• Average signal count can be expressed as:

• With fixed field-of-view      , the average
background count can be expressed as:
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Gaussian approximation:

Poisson calculation:

Detector-plane model of photon-counting Array and 
PSF with small pointing offsets.

Focal-Plane Spatial Filter Optimization
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Focal-plane spatial filter radius, R (cm)

Total average signal 
photons through aperture
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Focal-plane spatial filter radius, R (cm)

R at min PSE = 1.9 cm

1.8 cm

1.8 cm
sI

sI2

sI2
1

PSE(R)

Focal-plane optimization with constant background intensity

Focal-Plane Spatial Filter Optimization

2D Gaussian PSF model, standard deviation cm 1PSF



7

IEEE AEROSPACE CONFERENCE, MARCH 2011

Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.Victor Vilnrotter

Jet Propulsion Laboratory
California Institute of Technology

Focal-plane spatial filter radius, R (cm)

1.9 cm

1.7 cm

1.8 cm

R at min PSE =
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Focal-plane spatial filter radius, R (cm)
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Total average signal 
photons through aperture

1.8

Focal-plane optimization with constant signal intensity

Focal-Plane Spatial Filter Optimization

2D Gaussian PSF model, standard deviation cm 1PSF
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Gaussian
approximation

Poisson 

Contours of constant symbol-error probability, PSE, over 
the plane.  Dashed curves were computed using 
Poisson probabilities, solid curves computed via the faster 
Gaussian approximation.

Probability of symbol error, PSE, for M = 4 PPM signaling as 
a function of      , for a range of background energies,      .sK bK ),( bs KK

Poisson computation of PSE vs      sK Constant PSE contours,              plane),( bs KK

“a-b” accounts for increased background
“b-c” recovers initial PSE via increased 

signal at transmitter
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Compensation for excess background energy by increasing signal 
energy via aperture expansion, with the goal of maintaining 
constant symbol-error probability of PSE = 0.1. 

Tangent-Line Approximation and Exact Solution
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Example:

Therefore, only 55% increase in receiver collecting area (or 24% increase in receiver 
diameter) is required to compensate for 100% increase in background energy.
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Tangent-Line Approximation and Exact Solution
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Constant PSE contour not calculated,
shown only for reference
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1. Gaussian approximation:

• Compute PSE contour using the Gaussian approximation
• Determine intersection of                     line with Gaussian contour
• Calculate PSE along                     constraint           

2. Constrained trajectory solution:

• Starting at (0,0) calculate PSE along the                    trajectory
using Poisson model until desired PSE is reached
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Other potential “simpler” algorithms

Reduced Complexity Algorithms

Evaluation and Comparison of Reduced Complexity  Algorithms 
remains the subject of future work


